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ABSTRACT 
 

Many private and public stakeholders are strongly affected by the impact of earthquakes on a regional 
basis rather than on a single property at a specific site.  The stakeholders could be government and 
relief organizations that need to prepare for future events and manage emergency response, or private 
organizations that have spatially distributed assets. Whether for mitigating future seismic risk or 
managing response after an earthquake, regional assessment of the earthquake impact requires a 
probabilistic description of the ground motion field that an event is capable of generating or has just 
generated.  With knowledge, albeit probabilistic, of the level of ground shaking at a regional level, one 
could more accurately estimate, for example, 1) the monetary losses caused to specific structures owned 
by a corporation or insured by an insurance company, 2) the number of injuries, casualties, and 
homeless people in a region; 3) whether the access to certain critical buildings, such as hospitals, might 
be restricted due to yellow or red tagging; and 4) the probability that distributed lifeline networks for 
power, water, and transportation may be interrupted.  
 
The probabilistic assessment of ground motion parameters (e.g., peak ground acceleration or spectral 
quantities) at an individual site based on the event magnitude, the source-to-site distance, and the local 
soil conditions is a consolidated practice that started in the late 60’s.  Much less attention has been 
devoted, however, to estimating the statistical dependence of ground motion intensities from a single 
event at multiple sites.  (Note that here we do not intend to study the similarity, or coherence, in the 
time domain or frequency domain of ground motion signals at a point in time but rather the correlation 
of two peak values of oscillator response observed over the entire duration of the ground motion.)  In 
general, three effects account for correlation of ground motion parameters at two sites: a) they have 
been generated by the same earthquake (e.g., a high stress-drop earthquake may generate ground 
motions in the region that are, on average, higher than the median values from events of the same 
magnitude at all sites); b) the seismic waves travel over a similar path from source to site; and c) similar 
soil conditions (due to possible bias in the prediction equation used to estimate the median ground 
motion at the sites).  Modern ground motion attenuation equations implicitly recognize the first cause of 
dependency via a specific inter-event error term and, naturally, minimize the effect of the third.  The 
second source of correlation, which is not addressed in attenuation relationships for single sites, is 
crucial for the spatially distributed applications addressed here. Limited research on this topic to date 
indicates that correlation of peak ground acceleration or velocity values decreases with increasing 
spacing between two sites. The few published models, however, do not agree on the amount of 
correlation and on how fast the correlation dies down with distance. The site-to-site correlation of other 
ground motion parameters that are good predictors of structural response, such as elastic spectral 
acceleration, Sa(T) at a period T, to date has been only partially investigated. 
 
This study is divided in three parts. Firstly, we investigate the nature of spatial correlation in synthetic 
ground motion fields both to support results found using real recordings (see companion report by 
Jayaram and Baker, 2008b), and also to explore issues, such as isotropy and second-order stationarity of 
the correlation function, that cannot be studied with real data because the number of recordings for any 
single event is never sufficiently large. Secondly, we show how the Vector Probabilistic Seismic 
Hazard Analysis (VPSHA) tool can incorporate the spatial correlation of ground motion and be 
successfully used for computing the joint seismic hazard a multiple sites. The joint hazard forms the 
basis for assessing the likelihood that a portfolio of structures at those sites may incur monetary losses 
due to ground shaking effects. Thirdly, we explicitly model the ground motion spatial correlation in 
assessing earthquake losses using a Monte Carlo simulation technique for portfolios comprising a 
number of structures that is too large for the VPSHA tool to handle via numerical integration.  
 

 



1 SCOPE OF WORK AND MOTIVATION 
 
Many private and public stakeholders are strongly affected by the impact of earthquakes on a regional 
basis rather than on a single property at a specific site.  In the aftermath of large events, public bodies, 
such as government agencies and relief organizations, and private entities, such as corporations and utility 
companies, need to assess the potential damage on a regional level in order to plan their emergency 
responses in a timely manner. The same organizations also need to assess risks from future earthquakes 
before they occur in order to take mitigation actions such as retrofitting and acquiring insurance coverage.  
The impact of an event that just happened, or might happen in the future, can only be accurately evaluated 
by considering the distribution of ground motion intensity at multiple sites throughout the affected region.  
 
Earthquakes that occur in some seismically active areas of the world such as California, Japan and 
Taiwan, are recorded by extended networks of stations, while other areas such Mexico and Turkey are 
less well instrumented. In any of these regions, however, the severity of the shaking is only known at the 
station locations, while the shaking at other locations is uncertain. The level of uncertainty increases with 
increasing distance from nearby recording stations. The damage to structures, and therefore the economic 
and life loss caused by earthquakes, has been shown to correlate well with ground motion parameters that 
measure the peak response of simple single-degree-of-freedom (SDOF) oscillators with the same 
fundamental period of the real structures.  For other applications, such as the prediction of liquefaction of 
saturated sandy soil or the response of buried pipelines, the peak responses of the ground, such as the 
horizontal Peak Ground Acceleration (PGA) and Velocity (PGV), are considered to be more accurate 
estimators of the damage severity. With improved knowledge of the probability distributions of relevant 
ground motion parameters at a regional level, one could more accurately estimate, for example, 1) the 
monetary losses associated with structures owned by a corporation or insured by an insurance company, 
2) the number of injuries, casualties, and homeless people in a certain area; 3) whether the access to 
certain critical buildings, such as hospitals, is likely to be restricted due to likely yellow or red tagging; 4) 
the probability that lifeline networks for power, water, and transportation may be interrupted. 
 
1.1 Why are ground motion intensities at different sites correlated random variables? 
 
The probabilistic assessment of ground motion parameters at a site based on the magnitude of the event, 
the source-to-site distance, and the local soil conditions is a consolidated practice that started in the late 
60’s.  Many predictive equations have been developed either from empirical data or from mathematical 
models when historical data are insufficient. These equations are appropriate for estimating the 
parameters of the ground motion at a specific site.  Much less attention has been devoted, however, to 
estimating the statistical dependence of ground motion intensities from a single event at multiple sites.  If 
this dependency is neglected then ground motion values that are, for example, consistently very large over 
a spatially extended area will have a negligible probability of being observed.  As the Northridge 
earthquake showed clearly, these cases do occur, and can cause severe damage over a large area that 
cannot be predicted unless spatial ground motion correlation is adequately modeled. 
 
In general, the values of a ground motion parameter at two sites are correlated for three reasons1: a) they 
have been generated by the same earthquake (e.g., a high stress-drop earthquake may generate ground 
motions that are, on average, higher than the median values generated by events of the same magnitude); 
b) the seismic waves travel over a similar path from source to site; and c) homogeneity of site soil 
conditions (only present if the median ground motion estimates for those soil conditions are biased in the 

                                                 
1 To avoid any possible misunderstanding we emphasize here that this study is not concerned with the similarity, or 
coherence, at a point in time of ground motion signals at closely space sites but rather investigates the correlation of 
peak values of oscillator response (or of the ground motion) observed over the entire duration of the shaking. 



prediction equation).  Modern ground motion attenuation equations implicitly recognize the first cause of 
dependency via a specific inter-event error term, ηi, as follows:   
 

ln ��,� �  ln �	,

������� � 

�
τ � ε�,�σ        (1) 

 

Where Yi,j is the ground motion parameter of interest (e.g., Sa(T1)), jiY ,ln  is the median value of the log 

of Y predicted by the attenuation equation at site j for the magnitude-distance pair of earthquake i and 
local site conditions, ηi  is the aforementioned inter-event standard normal error term, εi,j is the site-to-site 
intra-event standard normal error term, and σ and τ are the corresponding standard deviations of the two 
error terms, or “residuals.”  
 
An alternative formulation for Equation 1, which was common in older prediction equations, is given by 
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where ,i jε%  is a random variable representing both the inter-event and intra-event variation at site j from 

earthquake i. By comparing Equations 1 and 2, it is can be seen (Park et al., 2007) that σ%  must equal 
2 2σ τ+  for the variances of the two equations to be equal, and that  
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In the context of assessing site-to-site correlation of ground motion IMs, it is convenient to use the model 

in Equation 2 for at least three reasons: a) there is now only one residual term for each observation ( ,ln i jY  

and σ%  are provided by ground motion prediction equations, and Yi,j is observed, so ,i jε%  can be computed 

directly); b) the residual term is easy to compute (the values of ηi, i=1,…,N, for all the N earthquakes and 
the frequency-dependent values of τ are usually not included by the developers of ground motion 
prediction equations in their publications); and c) Equation 2 is also the form commonly used in 
probabilistic seismic hazard analysis (PSHA) computer programs, so spatial correlation models in this 
format can be more easily incorporated into existing software. 
 
Example observed ,i jε%  residuals from the 1999 Chi-Chi, Taiwan, earthquake are shown in Figure 1; these 

residuals, whose value is indicated by the color scale, include both the inter- and intra-event error terms. 

 
 

Figure 1: Observed attenuation residuals from the 1999 Chi-Chi, Taiwan, earthquake 



 
The second source of correlation, namely the correlation between the two random variables εi,j and εi,k at 
two different sites j and k, has not yet been fully investigated. Spatial dependence can be observed in 
Figure 1, by noting that residuals at nearby locations take similar values.  
 
This intra-event site-to-site correlation, which is of course not addressed in attenuation relationships for 
single sites, is crucial for the spatially distributed applications mentioned above.  The limited research on 
this topic to date indicates that the correlation of peak ground acceleration or velocity values decreases 
with increasing spacing between two sites. This correlation can be estimated by computing empirical 
correlation coefficients for εi,j values at a site separation distance h (plus or minus some tolerance). 
Because the ηi value is fixed for each ith earthquake, it is effectively a constant when empirical correlation 
coefficients are estimated from a single earthquake. Thus, correlation coefficients obtained from εi,j values 
or ,i jε%  values will be identical, but these correlation coefficients only represent the correlation in the εi,j 

values. To obtain correlation coefficients for the ,i jε%  values, one must add the effect of the ηi random 

variable, which is perfectly correlated at all distances but cannot be detected from the previous empirical 
correlation coefficients. The total correlation in ,i jε%  values is thus 
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where ( )hρ =

, ,1 , ,2, ( )
i j i j

hε ερ  is the empirical correlation coefficient calculated for intra-event εi,j values 

separated by a distance h, and ( )hρ% =
, ,1 , ,2, ( )

i j i j
hε ερ

% %
 is the correlation coefficient for the total ,i jε%  values 

defined in Equation 3. Note that for very close sites (i.e., h→0) the correlation ( )hρ%  of IMs, of course, 

tends toward one, whereas for very distant sites (i.e., h→∞) it is simply given by the ratio of the inter-
term-variance to the total variance, as expected. The variance of the difference of the same IM quantity at 
two sites, k and l, separated by a distance h is simply 
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Some researchers (e.g., Boore et al., 2003; Kawakami and Mogi; 2003; Wang and Takada, 2005; Jeon 
and O’Rourke, 2005), have shown that the correlation between residuals of horizontal Peak Ground 
Acceleration, PGA, or velocity, PGV, at two sites decrease with increasing site spacing. Their models, 
however, do not agree on the amount of correlation and on how fast the correlation dies down with 
distance. Also the site-to-site correlation of other ground motion parameters, such as elastic spectral 
acceleration, Sa(T) at a period T, that are better predictors of structural response than PGA and PGV 
received to date only limited attention (Goda and Hong, 2008). Furthermore, these models all have 
shortcomings with respect to the proposed applications, as will be discussed below. 
 
This project is an attempt to fill this research gap. This study explores the site-to-site correlation of 
ground motion parameters in more depth.  It is important to emphasize here that the correlation that we 
consider is between the intra-event ground motion residuals at different sites from the same earthquake, 
namely the εi,j values generated by event i at different sites j,with j=1,..,N . The residuals are obtained by 
removing the median ground motion predicted for the site by a selected attenuation equation. We work 
with the residuals rather than with the absolute values of the ground motion parameters in order to remove 
the effects of the local soil conditions that, otherwise, would obscure the ground motion parameter 
correlation structure.   
 



Because residuals of ground motion parameters generated at different sites by the same event are well 
modeled by a multivariate Gaussian distribution, the spatial dependence of a pair of parameters at two 
sites (e.g., Sa(T1) at the first site and Sa(T2) at the second site) is fully characterized by the correlation 
coefficient.  In particular, we consider models for correlation as a function of the a) intensity parameters 
(i.e., peak values and spectral quantities); b) orientation of the recordings (e.g., fault-normal and fault-
parallel components versus randomly oriented components); and c) definition of the intensity parameters 
(e.g., arbitrary horizontal component versus the geometric mean of the two horizontal components). We 
also test whether the correlation depends on other characteristics of the event and site (e.g., the magnitude 
of the event, the distance of the sites from the causative rupture, and Somerville et al., 1997, directivity 
parameter) and on the relationship that is selected to predict the median motion at each site.  
 
As described in the next section, we derived the site-to-site intra-event correlation structure using both 
real seismograms from well-recorded past earthquakes and simulated recordings from hypothetical 
events. Identification of some of the more subtle spatial dependence properties requires a very large 
number of data points to keep the effect from being masked by noise due to limited sample sizes. 
Recorded ground motion libraries will be critical for developing the basic models, but simulated ground 
motion fields will be used to model more subtle effects which may require many thousands of data points 
to identify. While the simulations cannot completely replace the studies using recorded data, they may be 
useful for refining correlation models.  
 
The results of the study based on real recordings are presented in the companion report from Stanford 
University (Jayaram and Baker, 2008b). Section 2 of this report presents the results of the study on spatial 
correlation based on synthetic accelerograms. 
 
The two applications of these models for site-to-site correlation of ground motion parameters newly 
derived in this study are:  
 

1) Computation of the mean rate of occurrence of different pairs of ground motion parameters at two 
different sites using a modification of the recently introduced vector-valued Probabilistic Seismic 
Hazard Analysis (VPSHA) and application to a small portfolio of structures; (Section 3) 

2) Evaluation of the effects of ground motion parameter correlation on loss estimates of portfolios of 
properties with different spacing patterns. (Section 4) 

 
1.2 Relevance of this study for seismic risk mitigation  
 
The relevance of this study to reducing losses from earthquakes in the U.S. is direct and encompasses 
several different aspects. First and foremost this work provides a site-to-site ground motion parameter 
correlation structure that is consistent with recordings from historical earthquakes. This is the crucial 
building block of seismic risk analyses of multi-property portfolios or spatially distributed systems, as 
explained below.  Until now the overwhelming majority of such seismic risk analyses are performed 
either considering the ground motion variability for each earthquake scenario but neglecting the site-to-
site ground motion correlation, or by ignoring ground motion variability altogether and assuming median 
ground motion everywhere in the affected region.  Both approaches, and more so the latter, lead to 
unconservative risk estimates by failing to predict large consequences that can only be caused by larger 
than expected ground motions for spatially extended areas. These conditions can only be captured when 
the appropriate site-to-site ground motion correlation structure is adopted. 
 
In addition to modeling ground motion correlation, we show its use in two distinct seismic risk 
assessment applications that can be used for risk understanding, communication, and, eventually, 
mitigation.   
 
In the first application, the joint hazard at multiple sites is computed by modifying the VPSHA tool that 



has been recently introduced by one of the PI’s of this study (see, among others, Bazzurro, 1998; 
Bazzurro and Cornell, 2002; Luco et al., 2005a and 2005b) for estimating the joint hazard of two or more 
ground motion parameters at the same site.  This new application demonstrates the potential of VPSHA as 
a tool for seismic risk analyses of spatially extended systems. The product of this research could be 
adapted as an interactive tool on the USGS website that would enable a user to input the coordinates, for 
example, of two building sites, specify the fundamental period of vibration along one of the principal axes 
of the two buildings (i.e., TB1 and TB2), and obtain plots and tables with joint rates of exceedance of 
different pairs of values of Sa(TB1) and Sa(TB2).  The site could also provide all Sa(TB1) and Sa(TB2) pairs 
whose joint exceedance is equal to some target value, such as 10% in 50 years.  With the target 
exceedance rate and a pair of Sa(TB1) and Sa(TB2) values taken from the output, the user could also ask for 
a plot of the disaggregated magnitude and distance pairs of the scenarios that most contribute to the 
exceedance of those values at the site.  Such a tool could be very valuable for computing probabilistically 
sound estimates of the damage and losses that the portfolio of the two buildings may suffer.  
 
In the second application we show how important it is for the accuracy of portfolio loss estimates to 
properly model the ground motion spatial correlation.  Figure 2 shows some results for a hypothetical 
portfolio of 1,200 identical woodframe houses worth $100,000 each located on a regular rectangular grid 
with 500m spacing between consecutive sites (Figure 2a). The curves in Figure 2b show the mean annual 
rate of exceedance of different level of losses for this portfolio computed first by neglecting ground 
motion spatial correlation (lower red curve) and then by modeling it according to Boore et al. (2003). The 
difference is most significant for the rare losses. Note that a much larger difference in loss estimates is 
expected for portfolios with a limited number of properties located in a smaller geographical area.  It is 
clear from this simple example that modeling ground motion spatial correlation is crucial for accurate 
assessment of future seismic risk. The effects of spatial correlation of ground motion intensities on 
portfolio losses is investigated in this report using the correlation structure developed in this study rather 
than that of Boore et al. mentioned above. 
 
 

 
   (a)             (b) 
Figure 2: (b) Mean rate of exceedance curves for different level of losses for a hypothetical portfolio of 1,200 
residential wood frame houses located in Southern California (see regular grid shown as a rectangle in Panel a). 
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1.3 Objectives 
 
There are two main objectives of the proposed research study: 
 

• Objective 1: Development of a correlation structure for ground motion parameters generated by 
the same event at different sites. Previous studies of spatial dependence of ground motions report 
widely varying results and are also limited to PGA and PGV. The statistical study proposed here 
covers a greater range of ground motion parameters, and also considers more sophisticated 
models that include the effects of distance from the fault rupture, magnitude of the event, and 
directivity parameter of the site, if such effects are supported by the data. The correlation models 
are first developed using recorded ground motions, but the more complex aspects of the models 
are investigated with the aid of large datasets from ground motion simulations.  

• Objective 2: Integration of the correlation models developed here into two different applications: 
a) computation of the joint probabilistic hazard of ground motion parameters at two different 
sites via a modification of the VPSHA framework; c) estimation of the earthquake-induced 
losses to spatially distributed portfolios of many structures while accounting for site-to-site 
ground motion correlation.    

 
 



2 SPATIAL CORRELATION OF GROUND MOTION INTENSITIES IN 
SIMULATED RANDOM FIELDS  

 
This study utilizes simulated ground motions produced by Drs. Brad Aagaard and Robert Graves 
(Aagaard et al., 2008b, 2008a) to study the spatial correlation between ground motion intensities. Jayaram 
and Baker (2008b) used geostatistical tools to quantify and establish spatial correlations using ground 
motions recordings from past earthquakes. They also identified various factors influencing the extent of 
the spatial correlation, and developed a predictive model that can be used to select appropriate correlation 
estimates for use in risk assessment problems. While recorded ground motions are a great asset for 
estimating the extent of correlation between ground-motion intensities at two sites, they do not suffice for 
investigating the validity of assumptions such as second-order stationarity (i.e., dependence of correlation 
on just the separation between sites, and not on the actual location of the sites) and isotropy (i.e., 
invariance of correlation with the orientation of the sites) which are commonly used in the development 
of spatial correlation models. This is on account of the scarcity of ground motion recordings for any 
particular earthquake.  
 
This limitation is overcome when using synthetic ground motion random fields. The current study utilizes 
ground motions simulated at 35,547 locations based on source models of the 1989 Loma Prieta 
earthquake and the 1906 San Francisco earthquakes for verifying these commonly-used assumptions. 
 
2.1  Modeling correlations using semivariograms 
 
Ground-motion models that predict intensities at an individual site i due to an earthquake j take the 
following form of Equation 1 in Section 1, which is repeated here for convenience: 
 
ln ��,� �  ln �	,


�������   � 
�
τ � ε�,�σ        (6) 

 
where ijY  denotes the ground-motion parameter of interest (e.g., Sa(T1), the spectral acceleration at period 

T1); ijY  denotes the predicted (by the ground-motion model) median ground-motion intensity (which 

depends on parameters such as magnitude, distance, period and local site conditions); ijε  and jη denote, 

respectively, the normalized intra-event and inter-event residuals, which are both standard normal random 
variables. Finally, σ and τ are the corresponding standard deviations of the two types of residuals. These 
standard deviations are estimated as part of the ground-motion prediction model and are a function of the 
response period of interest, and in some models also a function of the earthquake magnitude and the 
distance of the site from the rupture. During an earthquake, the inter-event residual (jη ) computed at any 

particular period is a constant across all the sites. 
 
Jayaram and Baker (2008a) showed that a vector of spatially-distributed intra-event residuals2

( )1 2, ,..., dε ε ε=εεεε  follows a multivariate normal distribution. Hence, the distribution of εεεε  is fully 

defined by its mean and covariance of the residuals.  The mean of iε  equals zero, while its variance is 

provided by the ground-motion model. The correlation between iε  and jε  is, however, unknown and 

needs to be estimated.  The current work uses geostatistical tools to empirically estimate these 
correlations using the simulated ground motion data sets.  These tools are described briefly in this section; 

                                                 
2 We dropped the subscript j that refers to the jth earthquake to simplify the notation. 



a detailed discussion can be found in, for example, Goovaerts (1997), Deutsch and Journel (1998) and in 
Jayaram and Baker (2008b).  
 
Let εεεε  denote the set of inter-event residuals distributed over space. The semivariogram of εεεε  is a measure 
of the dissimilarity between the residuals and is useful in computing the spatial correlation between the 
residuals.  While working with correlations, it is convenient to work with normalized residuals as 
compared to ε ’s since normalized residuals are homoscedastic (i.e., have a constant variance). As 

mentioned above, normalized residuals (` ijε ) are obtained by dividing the ε ’s by the appropriate standard 

deviations obtained from the ground-motion model. The semivariogram of the random function (a random 
function is a collection of spatially-distributed random variables) of ` ijε ’s is defined as follows: 
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 = − ∑         (7) 

 
where ˆ( )hγ denotes the experimental (i.e., empirical) semivariogram of the normalized residuals; 

( , )u u hα α +  denotes the location of a pair of sites separated by h and N(h) is the number of such pairs. 

When empirically estimated, ˆ( )hγ only provides semivariogram values at discrete values of h, and hence, 
a function (e.g., an exponential function) is usually fitted to the discrete values to obtain the 
semivariogram values for continuous h. For instance, an exponential semivariogram takes the following 
form: 
 

( )ˆ( ) 1 exp 3 /h a h bγ = − −            (8) 

 
where a denotes the “sill” of the semivariogram (which equals the variance of the normalized residuals 
(=1)) and b denotes the “range” of the semivariogram (which equals the separation distance h at which 
ˆ( )hγ  equals 0.95a). It is to be noted that Equations 7 and 8 are implicitly based on the assumptions of 

stationarity and isotropy. This issue is addressed in detail in Goovaerts (1997), Deutsch and Journel 
(1998). 
 

Park et al. (2007) and Jayaram and Baker (2008b) showed that correlation coefficients and, 
therefore, the semivariogram of intra-event residuals (Equation 7) can be directly obtained using total 
residuals rather than using intra-event residuals (which is advantageous since the empirical data directly 
provides the total residuals). Let ε%  denote the total residual normalized by the standard deviation of the 
intra-event residual (as provided by the ground-motion model). It can be easily shown that: 
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        (9) 

 
It can be theoretically shown that the spatial correlation function (ˆ ( )hρ ) for intra-event residuals 

can be computed from the semivariogram function as follows: 
 

ˆ ˆ( ) 1 ( )h hρ γ= −           (10) 



 
Hence, it can be seen that the correlations are completely defined by the semivariogram, which in 

turn, is a function only of the range (The sill is known to equal 1, the variance of the normalized residuals 
for which the semivariogram is constructed.)  Moreover, note from equations 8 and 10 that a larger range 
implies a smaller rate of increase in ˆ( )hγ  with h, and subsequently, a smaller rate of decay of correlation 
with separation distance. 

 
In the current study, ranges of semivariograms of residuals are estimated using simulated ground 

motions. The residuals are computed using the ground-motion model of Boore and Atkinson (2007). 
Further, the simulated data sets are used to test the assumptions of second-order stationarity and isotropy, 
used in the development of the spatial correlation model. 
 
2.2 Data sets used 
 
In the current spatial correlation study, we used four simulated ground-motion data sets: 
 

• the 1989 Loma Prieta earthquake data set of Aagaard and Graves (described in Aagaard et al., 
2008b); 

•  the 1906 San Francisco earthquake Song-Mod data set of Aagaard (Aagaard et al., 2008a); 
• the 1906 San Francisco earthquake RandomHypo06 data set of Aagaard (Aagaard et al., 2008a); 

and 
• the 1906 San Francisco earthquake RandomHypoC data set of Aagaard (Aagaard et al., 2008a).  

 
The 1989 Loma Prieta simulations are based on the Beroza (1991) and the Wald et al. (1991) source 
models. The 1906 San Francisco earthquake Song-Mod simulations are based on the Song et al. (2008) 
source model with modified rise times to match the Boatwright and Bundock (2008) intensities. The 
1906 San Francisco earthquake RandomHypo06 simulations are similar to the Song-Mod simulations, 
except that the slip distribution is randomized. The RandomHypoC simulations are based on a modified 
epicenter (in Bodega Bay rather than a few kilometers offshore San Francisco, as in the other two cases) 
and a randomized slip distribution.  Ground motions are available at 35,547 sites for the simulations of 
Aagaard and at 40,000 sites for those from Graves’ simulations.  Sites on softer soil conditions with Vs30 
≤ 500m/s, however, are excluded from the computations, due to limitations in capturing nonlinear soil 
behavior in the simulations. Also, current limitations in the simulation procedure allowed us to 
investigate only the spatial correlation of spectral accelerations at periods greater than or equal to 2s. 
Simulated Sa(T)’s values for T<2s were considered unreliable. 
 

2.3 Results of the Spatial Correlation Study 
 

2.3.1 The 1989 Loma Prieta earthquake simulations by Aagaard 
 
The total residuals,ε% ’s, were computed from the fault-normal components for Sa(T) with T=2s, 5s, 7.5s, 
and 10s using the ground motion prediction equation of Boore and Atkinson (2008). The semivariograms 
of the residuals at discrete values of the separation distance, h, were computed and exponential models 
were fitted using the visual approach described in Deutsch and Journel (1998) and Jayaram and Baker 
(2008b). Special attention was paid to obtaining the best fit for values at short separation distances. 
Capturing the effects of the correlation at nearby locations has a much larger influence on the ground 
motions at a given site due to the so-called “shielding effect” (Goovaerts, 1997). Jayaram and Baker 
(2008b) discuss the reasons why this approach, which minimizes the error at short separation distances, 
provides semivariograms that are superior for practical applications to those fitted using the method of 
least squares, which minimizes the error over a wide range of separation distances. 



 
(a)                                                                                  (b)                   

 
 

(c)                                                                                 (d)                   
Figure 3: Semivariograms of residuals computed the Sa(T)’s from the fault normal component of the 1989 Loma 
Prieta simulations: Residuals for Sa(T) at (a) T=2s; (b) T=5s; (c) T=7.5s; and (d) T=10s. 
 

The semivariograms obtained using the residuals of the fault-normal components from the 
simulated data set are shown in Figure 3 for four oscillator periods while the corresponding ranges are 
plotted in Figure 4a. It can be seen that the values of the range and, therefore, the amount of spatial 
correlation increases with oscillator period. This trend is to be expected given that the coherency between 
the period components of the ground motion increases with period (Zerva and Zerva, 2002; Der 
Kiureghian, 1996). Note that the ranges obtained from this simulated 1989 Loma Prieta data set are 
slightly larger than those from recorded ground motions computed by Jayaram and Baker (2008b) 
(Figure 4b).  There may be several reasons for the larger spatial correlation of the simulated ground 
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motions compared to that of the recorded ones and more research is needed to uncover them all. 
However, as mentioned earlier, the primary reason for using simulated ground-motion sets in this study is 
to utilize their large number of available time histories to investigate the assumptions of isotropy and 
second-order stationarity of ground motion intensities. The testing of these assumptions can be carried out 
irrespective of the extent of correlations observed. 

 
(a)                                                                                  (b)                   

Figure 4:  Ranges of semivariograms at different periods:  Residuals computed using (a) Brad Aagaard 1989 Loma 
Prieta simulations and (b) recorded ground motions (Jayaram and Baker, 2008b) 
 
Effect of ground-motion component orientation on range 
 
In order to test if the orientation of component of the ground motion used has an influence on the 
estimates of spatial correlation, additional semivariograms of residuals were estimated using the fault 
parallel, north-south and east-west components of the simulated data set. The ranges of these 
semivariograms are presented in Figure 5.  The range estimates are essentially identical for T=2s and do 
not show a significant variation on the component used for longer oscillator periods. Hence, most of the 
following analyses in this section are based on the fault normal components of the simulated ground 
motions. 

 
Figure 5:  Ranges of semivariograms at different periods.  Residuals are computed using Aagaard’s Loma Prieta 
ground motions at different orientations 
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Testing the assumption of isotropy using directional semivariograms 
 
Directional semivariograms of residuals (Deutsch and Journel, 1998, and Jayaram and Baker, 2008b) are 
obtained as shown in Equation 9 except that the estimates are obtained using only pairs of ( , )u uz z

α α +h  

such that the azimuth of the vector h is identical for all the pairs utilized. In this study we consider 
azimuth angles of 0◦, 45◦ and 90◦. If anisotropy is present in the data, the semivariograms along different 
pre-specified azimuths will differ from one another and from the omni-directional semivariogram (i.e., the 
semivariogram obtained using all pairs of points irrespective of the azimuth).  
 
Figure 6a and Figure 6b compare the omni-directional semivariogram with the semivariograms obtained 
considering azimuths of 0◦, 45◦ and 90◦ for T=2s and T=10s, respectively. All the semivariograms are 
almost identical for separation distances below 10 km, where capturing correlation is most important, and 
are reasonably close for separation distances between 10 km and 20km.  As mentioned earlier, spatial 
correlation of ground motion intensities between sites separated by more than 20 km need not be modeled 
with great accuracy on account of the shielding effect. Therefore, based on this data set, it can be 
concluded that the correlations can be adequately represented using an isotropic model. 

 

  
(a)                                                                                  (b)                   

Figure 6: Semivariograms computed from components of different azimuth angles of the Aagaard 1989 Loma Prieta 
simulation data set: Residuals for (a) T=2s; (b) T=10s. The omni-directional semivariograms for T=2s and T=10s 
were also shown in Figure 3a and 3d, respectively. 
 
Testing the assumption of second-order stationarity 
 
A spatial random function Z is said to be second-order stationary if the random variable Zu and Zv (i.e., 
the random variables that represent the values of Z at locations u and v, respectively) have constant means 
and second-order statistics (i.e., the covariance) that depend only on the separation distance between u 
and v and not on the actual locations.  In other words, the covariance is the same between any two sites 
that are at the same distance and direction no matter which sites are chosen. The assumption of second-
order stationarity is not only convenient while developing correlation models since it allows the data 
available over the entire region of interest to be pooled together but also simplifies considerably the 
application of the models.   
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The assumption of second-order stationarity can be verified by comparing semivariograms constructed 
exclusively using residuals at sites belonging to different spatial domains.  If the semivariograms are 
similar, it will imply that the actual spatial location of the sites where the ground motion intensities are 
measured does not matter. In the current work, seven spatial domains are defined based on the distance of 
the sites from the rupture: Domain 1 includes sites between 0-20km while Domains 2-7 consist of sites 
between 20-40km, 40-60km, 60-80km, 80-120km, 120-160km and 160-200km of the rupture, 
respectively. Note that, as with histograms, the selection of the distance bins is somewhat arbitrary. Very 
narrow bins may provide results that are both unstable because of scarcity of data and potentially 
influenced by local effects (e.g., a cluster of sites with large residuals). Conversely, very broad bins may 
not detect any trend in the data, if there is one. Here, the width of the domains was selected judiciously to 
avoid both pitfalls above.  
 
The 1989 Loma Prieta fault normal ground motions are used to compute ε%  values at four different 
periods, namely, 2s, 5s, 7.5s and 10s. Only residuals at sites that belong to a particular spatial domain are 
then used to compute the semivariograms for that spatial domain. The ranges of these semivariograms 
corresponding to the seven distance domains are reported in Figure 7, along with the ranges 
corresponding to the semivariogram obtained by pooling all the fault normal residuals together regardless 
of the distance from the rupture.  It can be seen that the semivariograms computed using residuals at sites 
at 20-160km of the rupture are closer to the semivariogram obtained using all fault normal residuals than 
those from bins that are closer and farther from the fault. Semivariograms corresponding to a distance bin 
farther than 160 km from the rupture show significantly smaller ranges, as do the semivariograms for the 
distance bin within 20 km of the rupture.  The ground motion values at sites farther than 160 km from the 
rupture are generally very small and, therefore, accounting for the reduced correlations at these extremely 
far-off sites may not be very critical. On the contrary, it is important to study the smaller correlations 
observed at near-fault locations. Intuitively, it is reasonable to expect small-scale variations to reduce 
spatial correlation between ground motions at near-fault sites. At sites farther than 20km, the small-scale 
variations have less influence, thereby resulting in larger ranges and, therefore, larger correlations. 

 
Figure 7:  Ranges of semivariograms at different periods.  Residuals are computed using Aagaard’s 1989 Loma 
Prieta simulated ground motions at different distances from the fault rupture. 
 
Effect of directivity on spatial correlation 
 
Ground-motions at near-fault sites are typically influenced by directivity effects, resulting in large 
amplitude pulse-like ground motions in the forward-directivity region. Most ground-motion models, 



however, do not explicitly capture this effect. Therefore, the residuals in such cases may be more 
correlated because of the additional prediction errors at sites influenced by directivity that are not 
captured in the ground motion prediction model. We intend to study here whether ground motions that 
show directivity effects are spatially correlated in a dissimilar way from those that do not.  Baker (2007) 
developed a technique that uses wavelet analysis to identify ground motions with pulses. Although not all 
the pulses identified by this technique are due to directivity effects, this approach provides a reasonable 
data set for studying the potential impact of directivity. 

 
The wavelet analysis procedure of Baker (2007) was used to identify 434 pulses in the fault normal 

components of 1989 Loma Prieta simulations (incidentally, the wavelet analysis procedure also identified 
121 pulses in the fault-parallel direction, which are not utilized here).  Residuals at four different periods 
were computed based on these ground motions and semivariograms of the residuals were developed. The 
estimated ranges (Figure 8) of these semivariograms are smaller than those estimated based on all the 
fault normal residuals, but similar to those estimated based on ground motions at all the sites that are 
within 20 km from the rupture (Figure 7).  For a comparison, Figure 8 also shows the ranges obtained 
using ground motions at all the sites that do not have pulse-like ground motions, but are within 20 km 
from the rupture (called near-fault non-pulse records in the legend).  It is seen that the ranges obtained in 
this case are similar to the ranges obtained using pulses. This indicates that the effect of directivity does 
not substantially alter the ranges of the semivariograms. It is to be noted that the ranges based on near 
fault pulse-like and non-pulse-like ground motions have been computed separately only for pedagogical 
purposes. For all practical purposes (e.g., risk assessment of building portfolios), the only information 
required are the ranges computed based on all near-fault ground motions (shown in Figure 7) unless sites 
where pulse-like ground motions will be present can be accurately predicted.  

 
Finally, it also to be noted that the pulse-like ground motions simulated for the Loma Prieta earthquake 
are concentrated in a fairly small region. As a result, the estimates of spatial correlation of pulse-like 
ground motion may not be very robust. The results obtained from the 1906 San Francisco earthquake 
simulations described later will not have this limitation. 

 
Figure 8: Ranges computed using pulse-like and non-pulse-like near fault 1989 Loma Prieta ground motions. 
 
2.3.2 The 1989 Loma Prieta earthquake simulations by Graves 
 
All the tests carried out on the Aagaard’s simulations discussed in Subsection 2.3.1 were repeated using 
this data set by Graves.  Again, we used as base case the fault-normal components. Figure 9 and Figure 
10 show the semivariograms estimated using the residuals computed for PGA, and for Sa(T) at T equal to 



0.5s, 1.0s, 2.0s, 5.0s, 7.5s, and 10.0s, while Figure 11 displays the corresponding ranges. The ranges at 
the shorter periods are close to the values obtained in the previous subsection, but the values of the long-
period ranges are slightly larger than previously observed. Investigating the reasons behind this difference 
is beyond the scope of this study. However, we speculate that this higher correlation may be partly due to 
a procedure called “bulldozing” adopted by Graves which converts the 3D surface of the earth in to a 
plane surface.  This procedure may introduce additional systematic errors in the generated ground 
motions, which would then result in an increase in the range of the semivariograms. Figure 12 shows the 
ranges of semivariograms obtained from the residuals of the fault-normal (also shown in Figure 11), fault-
parallel, north-south, and east-west components.  As with the previous data set, it can be seen that the 
ranges are reasonably close, irrespective of the ground motion component used.  Therefore, the 
subsequent analyses are based on only the fault normal residuals. The assumption of isotropy was verified 
further by comparing the directional (for selected azimuth angles) and the omni-directional 
semivariograms of the residuals computed at T=2.0s and T=10.0s (Figure 13).  The directional 
semivariograms and the omni-directional semivariograms match reasonably well at short separation 
distance, thereby indicating that isotropy is a reasonable assumption.  
  



 

 
Figure 9:  Semivariograms of residuals computed using the fault normal component of the simulated 1989 Loma 
Prieta ground motions by Graves. Residuals computed for (a) PGA; and Sa(T) at (b) T=0.5s; (c) T=1.0s; and (d) 
T=2.0s 
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Figure 10:  Semivariograms of residuals computed using the fault normal component of the simulated 1989 Loma 
Prieta ground motions by Graves. Residuals computed for Sa(T) at (a) 5.0s; (b) T=5.0s; and (c) T=10.0s. 
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Figure 11: Ranges of semivariograms of residuals computed using the fault-normal components of the ground 
motions simulated by Graves for the Loma Prieta earthquake. 
 

 
Figure 12: Ranges of semivariograms of residuals computed using different orientations of the ground motion 
components simulated by Graves for the Loma Prieta earthquake. 



 
(a)                                                                                  (b)                   

Figure 13: Semivariograms computed from components of different azimuth angles of the 1989 Loma Prieta 
simulation data set by Graves: Residuals for Sa(T) at (a) T=2s; (b) T=10s. The omni-directional semivariograms for 
T=2s and T=10s were also shown in Figure 9c and Figure 10d, respectively.  
 

The test of second-order stationarity of the semivariograms is limited in this case to three distance 
domains: sites between 0-20km, 20-40km, and 40-60km from the rupture. Sites beyond 60 km were few 
and scattered and, hence, not considered in the study. The ranges of semivariograms corresponding to 
these three domains are shown in Figure 14 along with the semivariograms from all the sites. Consistently 
with the results from the previous data set, ground motions at sites within 20 km of the rupture show a 
lower spatial correlation than those at farther sites. The ranges for sites within 20km at longer periods, 
however, are significantly larger than those from the data set by Aagaard. The ranges for sites between 20 
and 40 km of the rupture imply a larger correlation than that from the previous data set particularly at 
long periods. This increase, however, seems to be due to the local effects mentioned before that are 
generated by a cluster of similar-valued residuals in this distance domain. At shorter periods, however, 
this local effect is not found, and the ranges are comparable to those obtained using all the fault-normal 
residuals.  The ranges in the 40-60km domain are similar to those obtained using all fault-normal 
residuals. Therefore, this limited analysis show a reasonable agreement with the conclusions derived 
using Aagaard’s simulations for the same event. 

 
 



 
Figure 14: Ranges of semivariograms at different periods.  Residuals are computed using Graves’ 1989 Loma Prieta 
simulated ground motions at different distances from the fault rupture. 
 

Finally, to verify the effects of directivity on spatial correlation of ground motion intensities, the 
same wavelet analysis technique of Baker (2007) identified 1,636 pulses in the fault normal components 
of this simulated data set (incidentally, 499 fault-parallel pulses were also extracted). Clearly, the much 
larger number of pulses observed in Graves’ simulations compared to that in Aagaard’s simulations is 
indicative of some profound differences between the two techniques.  As in the previous section, the 
pulse-like records are fairly concentrated in a narrow area and, hence, no attempt was made to quantify 
their spatial correlation.  In any case, the most practically-useful near-fault range estimate is that obtained 
using all recordings within about 20 km from the rupture discussed above. 
 
2.3.3 The 1906 San Francisco earthquake simulations: Song-Mod dataset 
 
In this section, all the tests performed using the 1989 Loma Prieta simulations are repeated using the 
Song-Mod data set of the 1906 San Francisco earthquake by Aagaard. The epicenter of the earthquake is 
assumed to be a few kilometers offshore from San Francisco (Long: 122.557; Lat: 37.75).  Again, the 
base case considers the fault-normal components. The analyses are based on residuals for Sa(T) at T=2.0s, 
T=5.0s, T=7.5s, and T=10.0s computed using the prediction equation of Boore and Atkinson (2008). The 
semivariograms of the residuals and the corresponding ranges are shown in Figure 15 and Figure 16, 
respectively. These figures noticeably shows that the estimates of the ranges are larger than those from 
both the simulated Loma Prieta data set and recorded data sets for the historical events considered in 
Jayaram and Baker (2008b). Again, it is not unexpected to observe range estimates larger than those from 
real recordings since limitations in simulation techniques may introduce systematic errors in the ground 
motions that result in artificially higher spatial correlation.  
 



 
Figure 15:  Semivariograms of residuals computed using the fault normal component of the simulated 1906 San 
Francisco earthquake Song-Mod data set. Residuals computed for Sa(T) at (a) T=2.0s (b) T=5.0s; (c) T=7.5s; and (d) 
T=10.0s. 
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Figure 16: Ranges of semivariograms of residuals computed using the fault-normal components of the 1906 San 
Francisco earthquake Song-Mod ground motion data set.  
 
Figure 17 compares the ranges of the semivariograms of the residuals computed using the fault-normal, 
fault-parallel, north-south, and east-west components of the simulations. As seen in the previous section, 
the ranges do not show a strong dependence on the ground-motion component used and, therefore, 
subsequent analyses in this section are based on only the fault normal component of the ground motion. 

 
The assumption of isotropy was also verified using directional semivariograms of residuals computed at 
three different azimuths (0◦, 45◦ and 90◦). These directional semivariograms and the omni-directional 
semivariogram are shown in Figure 18. As seen from the Loma Prieta data set, the directional 
semivariograms obtained are all reasonably similar to the omni-directional semivariogram, thereby 
corroborating the isotropic assumption. 
 

 
Figure 17: Ranges of semivariograms of residuals computed using components with different orientations from the 
1906 San Francisco earthquake Song-Mod ground motion data set.   
 



 
Figure 18: Semivariograms computed from components with different azimuth angles of the 1906 San Francisco 
earthquake Song-Mod simulation data set by Aagaard: Residuals for Sa(T) at (a) T=2s; (b) T=10s. The omni-
directional semivariograms for T=2s and T=10s were also shown in Figure 15a and Figure 15d, respectively. 
 
As before, the assumption of second-order stationarity was verified by constructing semivariograms of 
residuals at sites belonging to different spatial domains. The test of second-order stationarity of the 
semivariograms considers four distance domains: sites between 0-10km, 10-30km, 30-50km and farther 
than 50km from the rupture. The semivariogram ranges for these cases, which are shown in Figure 19, are 
fairly close to those obtained assuming second-order stationarity (i.e., using all the fault normal residuals). 
As before, the estimates of the ranges of semivariograms obtained using residuals at sites very close to the 
rupture are, again, smaller than the average ranges. In this simulated data set, however, the differences are 
less significant than those observed in the previous cases.  

 
Figure 19: Ranges of semivariograms at different periods.  Residuals are computed using the Song-Mod 1906 San 
Francisco earthquake ground motions at different distances from the fault rupture. 
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Finally, to verify the effects of directivity, the wavelet analysis technique of Baker (2007) identified 2,577 
pulse-like ground motions in the fault normal component of the simulations (and, although not used here, 
also 2,315 fault-parallel pulses). The estimates of the ranges of semivariograms based on these ground-
motion residuals are shown in Figure 20.  Also shown in the figures are the ranges of semivariograms 
obtained using all the fault-normal residuals, the ranges estimated using residuals at sites without pulses 
but within 10 km from the rupture, and the ranges computed using residuals at all sites within 10 km of 
the rupture (which are also shown in Figure 19). It can be seen that the ranges obtained using pulse-like 
ground motions are similar to those estimated using non-pulse-like ground motions, as seen in the 
previous section. 
 

 
Figure 20: Ranges computed using pulse-like and non-pulse-like near fault Song-Mod ground motions for the 1906 
San Francisco earthquake.  

 
Incidentally, note that the number of fault parallel pulses extracted is comparable to the number of fault 
normal pulses found. This is quite unusual, and is not common in recorded ground motions. The source 
inversion model of Song et al. (2008), however, includes 100km of super-shear rupture just north of the 
hypocenter. Aagaard and Heaton (2004) analyzed long-period near-source ground motions from 
simulations of M7.4 events on a strike-slip fault with super-shear ruptures and concluded that the super-
shear ruptures show significant fault-parallel motion before fault-normal motion. Further, they observed 
that in these cases the maximum horizontal displacements and velocities tend to rotate from the fault 
normal direction to the fault parallel orientation. Therefore, it is reasonable that the simulations produce a 
comparable number of fault-normal and fault-parallel pulse-like ground motion time histories. 
 
2.3.4 The 1906 San Francisco earthquake simulations: RandomHypo06 and RandomHypoC datasets 
 
The RandomHypo06 and the RandomHypoC data sets are similar to the Song-Mod data set, except that 
they are both based on different slip distributions, and the RandomHypoC data set is also based on a 
different hypocenter (in Bodega Bay, which is located in the northern portion of the 1906 rupture). The 
estimated ranges of the semivariograms are shown in Figure 21and Figure 22 for the two sets of 
simulations. Clearly, the ranges estimated using these two data sets are much larger than those estimated 
using the other two data sets described previously. This is an indication that the simulations for these two 



scenarios have produced much more correlations between ground motions than seen in the recorded 
ground motions. One possible reason for these larger correlations is the use of a more uniform rupture 
speed in the RandomHypo06 and the RandomHypoC simulations, as compared to that in the Song-Mod 
simulations.  As mentioned previously, however, the main motivation behind using simulated ground 
motions is to verify the assumptions used in developing the correlation models, rather than to derive the 
extent of the correlations between ground motions.  Hence, these data sets are used for verifying the 
assumption of second-order stationarity despite the large ranges seen. 
 

 
Figure 21: Ranges of semivariograms of residuals computed using the RandomHypo06 simulations of the 1906 San 
Francisco earthquake. 

 
Figure 22: Ranges of semivariograms of residuals computed using the RandomHypoC simulations of the 1906 San 
Francisco earthquake. 
 



The ranges of the semivariograms of residuals computed using the fault-normal, fault-parallel, north-
south and east-west components of these simulated ground motion data sets are shown in Figure 23 and 
Figure 24. As seen in the previous sections, the ranges do not show a strong dependence on the ground-
motion component used and, therefore, any further analysis in this section is based on the fault normal 
component of the ground motions. 
 

 
Figure 23: Ranges of semivariograms at different periods. Residuals are computed using RandomHypo06 ground 
motions at different orientations 
 

 
Figure 24: Ranges of semivariograms at different periods.  Residuals are computed using RandomHypoC ground 
motions at different orientations 
 



As before, semivariograms were computed using residuals at sites belonging to the following four 
distance domains: sites between 0-10km, 10-30km, 30-50km and farther than 50km from the rupture.  
The corresponding estimates of the ranges along those for the semivariograms computed all the fault 
normal components regardless of their distance from the rupture are plotted for the two data sets in Figure 
25 and Figure 26.  In both cases, the assumption of second-order stationarity seems to be reasonably valid 
(barring a few outliers) except at sites that are within 10km of the rupture, whose spatial correlation is 
lower. This is consistent with observations from the other simulated ground-motion datasets. 

 
Figure 25: Ranges of semivariograms at different periods. Residuals are computed using RandomHypo06 ground 
motions at different orientations 

 
Figure 26: Ranges of semivariograms at different periods. Residuals are computed using RandomHypoC ground 
motions at different orientations 
 
Finally, as before, the wavelet analysis procedure of Baker (2007) identified 2,649 and 2,698 pulses in the 
fault normal components of the ground motions from the RandomHypo06 and the RandomHypoC 



datasets, respectively.  Semivariograms were computed using these pulse-like ground motions, and the 
ranges of these semivariograms are shown in Figure 27 and Figure 28.  Also these figures include the 
range estimates computed using near-fault (i.e., 0-10km) non-pulse-like ground motions and using all 
near-fault ground motions.  Unlike in the previous data sets, the ranges computed based on pulse-like and 
non-pulse-like ground motions from the same spatial domain (near-fault) are drastically different. The 
source of these differences is not clear, but, as mentioned previously, only the average ranges calculated 
based on all the near-fault ground motions are, at this point in time, useful in practice. However, these 
near-fault ground motion ranges show a similar trend to those seen from other simulated datasets and this 
is comforting from the practical viewpoint of developing standardized correlation models. 

 
Figure 27: Ranges computed using pulse-like and non-pulse-like near fault RandomHypo06 ground motions 
 

 
Figure 28: Ranges computed using pulse-like and non-pulse-like near fault RandomHypoC ground motions 
  



3 VECTOR PROBABILISTIC SEISMIC HAZARD ANALYSIS FOR A SMALL 
PORTFOLIO OF STRUCTURES 

 
In this section, we illustrate how site-to-site ground motion parameter correlation affects the joint 
performance of a small portfolio of key structures of interest to a stakeholder (i.e., a government agency, 
a corporation, or an insurance company). The extension to large portfolios follows in Section 4. Possible 
measures of performance include the expected losses for the entire portfolio, or the probability that some 
fraction of the structures in the portfolio will collapse, given the occurrence of a specific event or within 
some period of time. For example, a stakeholder may be interested in the probability that his/her primary 
and backup facilities both fail in the same event, or in the probability that total repair costs for the two 
facilities will exceed $10M (regardless of how the loss is partitioned between the facilities). Estimates of 
losses and collapse probabilities are essential when making decisions to mitigate future seismic risk. 
 

The first step in performing these loss analyses is to assess the joint probability of occurrence of multiple 
ground motion parameters at the building sites. It has been shown that for most structures a meaningful 
link can be established between the intensity of a ground motion parameter (e.g., spectral acceleration, Sa, 
at the fundamental period of the structure, T), and structural response.  Therefore, it is extremely useful to 
have a tool that computes the annual rate of occurrence of any pairs of ground motion parameter values at 
the building sites. If the sites are very far from each other (e.g., 100km) they can be treated separately as 
customarily done via Probabilistic Seismic Hazard Analysis (PSHA).  However, sites that are relatively 
close to each other (e.g., 10km apart or less) during an earthquake are affected by ground motion whose 
peak intensity parameters are correlated (see Section 2 and companion report by Jayaram and Baker, 
2008b).   
 

When the number of ground motion parameters and the number of sites is small (say, one parameter per 
site for up to five sites) then the Vector-valued PSHA (VPSHA) tool (Bazzurro, 1998; Bazzurro and 
Cornell, 2002) originally developed for assessing joint hazard of multiple ground motion parameters at a 
single site is an appropriate tool for this objective. Only some relatively minor adjustments to the original 
methodology are needed, as explained below.  A case with more parameters and more sites is, however, 
too computational intensive to be treated within the VPSHA framework with the current computer 
resources and it is better addressed using the Monte Carlo approach described in the next section.  How 
VPSHA can be used for computing the joint hazard at multiple sites is discussed in the next subsection. 
 
3.1 Methodology 
 
The VPSHA approach implemented here is based on the tenable assumption of the joint lognormality of 
the correlated ground motion parameters (Baker and Jayaram, 2008) conditional on the characteristics of 
the causative event. . Recall that the same assumption has been exploited for essentially any ground 
motion prediction equation in existence and proven for the distribution of different peak parameters at the 
same site (Jayaram and Baker, 2008a). The joint Mean Rate Density, MRD (for definition and details, see 
Bazzurro and Cornell, 2002) or, alternatively and equivalently, the Mean Annual Rate (MAR) of 
occurrence of a pool of ground motion parameters can be computed with the knowledge of the following 
input: 
 

• Site-specific seismic hazard curves for the ground motion parameters at the sites. 
The vector of ground motion parameter is denoted here as S, where the bold character indicates 
that the quantity is a vector. In the application at hand, this vector could include, for example, the 
horizontal spectral acceleration at a given period at two sites or the spectral acceleration at two 
different periods at two sites. The periods could correspond to the first mode of vibration of each 
structure. These two hazard curves can be obtained with any standard PSHA code.   

 



• The pair-wise correlation matrix of all the ground motion parameters). 
In the companion report Jayaram and Baker (2008b) have empirically derived the correlation 
structure for spectral accelerations with the same period at two sites regardless of the component 
orientation. The correlation matrix for spectral acceleration at different periods at two sites or of 
other ground motion parameters (e.g., Arias intensity) at two sites has not yet been developed but 
it can be derived using the same approach as in Jayaram and Baker (2008b).  
 

• The disaggregation results from scalar PSHA. 
The joint distributions of all the basic variables, X, used in the ground motion prediction equation 
of choice (i.e., M, R, and all the other variables – such as the style of faulting, the directivity 
parameters, the distance to the top of the co-seismic rupture, and dip angle, that are needed to 
compute the level of ground motion for every earthquake rupture) at each site conditional on the 
value of the selected ground motion parameter is a straightforward extension of the 
disaggregation results (e.g., based on M and R only) routinely available from standard scalar 
PSHA codes. The necessary modifications are conceptually simple and involve only 
disaggregation of the site hazard in terms of additional RVs beyond the magnitude, M, the source-
to-site-distance, R, etc. as done in the past. 

 
The input and the output of the VPSHA methodology will be illustrated for an example of two sites in 
San Francisco in the nest subsection. 
 
Again, one of the distinct appealing qualities of this methodology is that it can be written as a standalone 
post-processor routine of a standard PSHA code.  The accuracy of the results, however, could potentially 
be jeopardized by the selection of too wide bins during the discretization of the domain of each ground 
motion parameter (e.g., M and R).  
 
The adopted VPSHA methodology described below has been successfully applied to compute the joint 
hazard of multiple parameters at the same site in Bazzurro et al. (2008). We have modified it here to be 
applicable to multiple sites.  
 
To be concise but without losing generality, we present the details of the procedure for the case of three 
sites: Site 1, Site 2, and Site 3. The parameter of choice is a spectral acceleration at a given period 
(perhaps different at different sites). This approach, which requires some basic matrix algebra, is scalable 
to a larger number of sites and can include any other ground motion parameters (e.g., Peak Ground 
Velocity, Peak Ground Acceleration, Arias Intensity, etc.) for which spatial correlation structure and 
prediction equation are available. For simplicity, here we will also treat the RVs representing the ground 
motion parameter at each one of the three sites (i.e., Sa1;Sa2;Sa3) as discrete rather than continuous 
quantities. 
 
Let us denote with S=[Sa1;Sa2;Sa3] the vector of RVs for which we seek to obtain the joint hazard and with 
MAR[Sa1;Sa2;Sa3] = MARSa1;Sa2;Sa3(a1;a2;a3) the mean annual rate of three spectral acceleration quantities 
Sa1, Sa2, and Sa3  in the neighborhood of any combination of three values a1, a2, and a3, respectively. 
Strictly speaking, note that Sa1;Sa2;Sa3  represent the natural logarithm of the spectral accelerations but the 
logarithm has been dropped here to avoid heavy notations. MAR[Sa1;Sa2;Sa3] could denote, for example, 
the MAR that spectral accelerations at the fundamental mode of each building assume values in the 
neighborhood of, say, 1.0g at each one of the three sites. In an application, these spectral acceleration 
values could be related to the onset of an important structural limit state (e.g., collapse) found using a 
statistical analysis of the response of the structure to many ground motion records.  
 
Using simple probability theory and the theorem of total probability, one can write the following: 
 



1 2 3 1 2 3 2 3 3[ ; ; ] [ | ; ] [ | ] [ ]a a a a a a a a aMAR S S S P S S S P S S MAR S= ⋅ ⋅      (6) 

 
where 
 

• 1 2 3 1 2 3 2 3[ | ; ] [ | ; ; ] [ | ; ]a a a a a a a aP S S S P S S S P S S= ⋅∑
X

X X      (7) 

is the conditional distribution of 1aS given 2aS and 3aS . This term can be numerically computed 

by conditioning it on the pool of variables, X, in PSHA that appear in the selected ground motion 
prediction equation and integrating over all possible values of X. Given the assumption of joint 
lognormality of S mentioned before, for every possible value of X the quantity 

1 2 3[ | ; ; ]a a aP S S S X  can be computed simply with the knowledge of the variance-covariance 

matrix of Sa1, Sa2, and Sa3 (e.g., Baker and Cornell, 2006) and the ground motion prediction 
equation of choice. More mathematical details are provided below. 2 3[ | ; ]a aP S SX , which is the 

probability of X conditional on the values of 2aS and 3aS , can instead be obtained via 

disaggregation and Bayes theorem as follows: 
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where 
 

o [ ]3| aP SX  can be derived using conventional scalar PSHA disaggregation. 

o [ ]2 3| ;a aP S S X , as for a similar term above, can be computed with only the knowledge 

of the variance-covariance matrix of Sa1, Sa2, and Sa3, and the attenuation relationship of 
choice. 

• 2 3 2 3 3[ | ] [ | ; ] [ | ]a a a a aP S S P S S P S= ⋅∑
X

X X  can be evaluated as explained above. 

• 3[ ]aMAR S  is the absolute value of the differential of the conventional seismic hazard curve for 

the scalar quantity Sa3 at Site 3. 
 

In more detail, the above conditional terms (i.e., 1 2 3[ | ; ; ]a a aP S S S X  and [ ]2 3| ;a aP S S X ) can be 

obtained using the multivariate normal distribution theorem. More in general, if we call 

[ ]1 2, ,...,
T

a a anS S S=S  the vector of the natural logarithm of the random variables for which the joint 

hazard is sought, then S is jointly normally distributed with a mean vector (µ) and variance-covariance 

matrix (ΣΣΣΣ ), i.e., in mathematical terms ( )~ ,N=S ΣΣΣΣµµµµ . By partitioning S into 2 vectors 

[ ]1 2, ,...,
T

a a akS S S=1S  and [ ]1 2, ,...,
T

ak ak anS S S+ +=2S  where S2 comprises the conditioning variables 

(in the example above S1=[Sa1] and S2=[Sa2, Sa3] ), one can write the following: 
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        (9) 

For jointly normal distribution, the conditional mean and conditional variance can be determined as 

{ } ( )| || ~ ,N=2 1 1 2 1 2 1S S s µµµµ ΣΣΣΣ          (10) 
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Figure 30: Seismic hazard curves for Sa(0.3s) at both sites 
 
Figure 30 shows the conventional hazard curves for Sa(0.3s) at these two sites. These hazard curves, 
however, are expressed in terms of mean annual rates of exceedance rather than annual probability of 
exceedance. If the values of Sa(0.3s) generated at these two sites by the same earthquake were to be 
considered as independent RVs, as is conventionally done (see Equation 2), then the joint MRD of 
Sa(0.3s) would be the one shown in Figure 31a. In passing, note that even when the ground motion 
parameters at both sites are computed independently they are still (marginally) dependent due to the 
commonality of the same scenario events in the PSHA calculations (for details, see Bazzurro and Cornell, 
2002). In other words the contours of the joint MRD in Figure 31a. are ellipses and not circles.  
 
If, however, the joint hazard is computed according to Equation 1, the common inter-event error term 
introduces a mild spatial correlation between the ground motion parameters at both sites. This case is 
shown in Figure 31b and the correlation coefficient between (the logarithm of) Sa(0.3s) at Site 1 and (the 
logarithm of) Sa(0.3s) at Site 2 is 0.30. (Note that when the spatial correlation is modeled only by the inter 
event term the correlation coefficient, ( )hρ% , which in this case is equal to ρ(h), is identical between the 
ground motion parameters at any two sites at any distance from one another).  Of course, the two 
marginal distributions of the joint distribution shown in these figures are consistent with the hazard curves 
in Figure 30. It is clear by comparing both panels of Figure 31 that accounting for the inter-event term 
makes the chance of observing high (or low) ground motions at both sites significantly higher than in the 
independent case. 
 
When the spatial correlation is appropriately accounted for the ridge introduced by this additional source 
of correlation in the joint MRD of Sa(0.3s) at the two sites becomes considerably more evident (Figure 
32). The joint MRD in Figure 32a was obtained by assuming that the geologic conditions vary 
significantly over the region while the Figure 32b assumes that considerable clusters of sites exist with 
similar soil conditions. Both correlation models were developed by Jayaram and Baker (2008b) in the 
companion report. In the latter case the empirical model at the two sites predicts higher correlation ( ( )hρ%
=0.77) for the correlation of Sa(0.3s) than in the former case (( )hρ% =0.53). Finally Figure 32c shows for 
comparison purposes the joint MRD for Sa(0.3s) computed using the correlation model by Boore et al. 
(2003), which for this site-to-site distance produces a correlation coefficient of ( )hρ% =0.49 which is lower 
than those from the previous two cases. 
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(a)             (b) 

Figure 31: Joint MRD of Sa(0.3s) at the two sites shown in Figure 29 when the values of Sa(0.3s) generated by the 
same event at the two sites are considered to be independent (left) or correlated via the inter-event term .  
 

 
(a)             (b) 

 
(c) 

Figure 32: Joint MRD of Sa(0.3s) at the two sites shown in Figure 29 when the values of Sa(0.3s) generated by the 
same event at the two sites are considered to be spatially correlated according to the model by a) Jayaram and Baker, 
(2008b) with no soil clustering, b) Jayaram and Baker (2008b) with soil clustering, and c) Boore et al. (2003) in 
addition to the correlation contributed by the inter-event term.  



The effects of including or neglecting the ground motion spatial correlation when estimating the 
likelihood of future losses for these two buildings can be detected by inspecting the mean rate of 
exceedance loss curves showed in Figure 33. For this illustrative example we assumed that each site hosts 
a low-rise reinforced concrete frame building of modern construction worth 10M USD. The differences 
among these curves produced by the four of the five modeling approaches considered in Figure 32 and 
Figure 33 are more evident Figure 34. As expected, considering the ground motion correlation increases 
the likelihood of observing very low and very high losses. Hence, the MRE loss curves that consider 
correlation cross the independent case one at some intermediate loss level. It is emphasized here that 
neglecting the ground motion correlation overestimates the likelihood of all losses in exceedance of about 
300,000 USD and underestimates the likelihood of observing losses that are larger than that amount. An 
analysis of the results from another perspective (Figure 34b) shows that all the losses with mean return 
period longer than about 12 years are underestimated if the ground motion correlation is not considered, 
as routinely done. Finally note in Table 1 that, at least in this case, the estimates of the average annual 
losses are fairly stable regardless of whether the ground motion spatial correlation is modeled or not. This 
is due to the compensating over- and under-estimation errors introduced by neglecting the spatial 
correlation. The lack of effect on the AAL is, however, not generally valid for other portfolios.  

 
 
Figure 33: Mean rate of exceedance curves for the portfolio of two buildings. 
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Figure 34: Ratio of loss mean exceedance curves with respect to the independent ground motion case plotted versus 
loss (left) and versus mean rate of exceedance (right). 
 
 

 
 
Table 1: Average Annual Loss (AAL) values for the portfolio of buildings estimated using four representations of 
the spatial correlation of ground motion intensities: a) independent ground motion and the two sites; b) correlated 
ground motion via inter-event error term only; c) spatially correlated ground motion without soil clustering effects; 
and d) with clustering effects.  
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4 EFFECTS OF SPATIAL CORRELATION OF GROUND MOTION ON LOSSES 
TO LARGE PORTFOLIOS OF STRUCTURES 

 
To study the effects of spatial correlation of ground motion intensities on portfolio losses we 
considered two hypothetical portfolios: 
 

• Large Portfolio of 41,400 buildings located in the six counties around the San Francisco 
Bay Area, with 200 properties in each postal code (Figure 35).  

• Small Portfolio of 200 buildings concentrated in the 94111 postal code downtown San 
Francisco (Figure 36). In this portfolio all buildings are within 2km from one another. 

 
In both cases we assumed that these buildings are low-rise modern, ductile low rise concrete 
moment-resisting frame structures with a replacement value of $100,000 per property. To 
simplify ground motion calculation we assumed NEHRP B-C soil type conditions at all 
locations. 
 
 

 
Figure 35: Hypothetical large portfolio of 41,400 buildings. 
 



 
Figure 36: Hypothetical small portfolio of 200 buildings. 
 
As mentioned in the previous section, for portfolios with a large number of structures the 
convolution of the joint hazard computed via vector PSHA with the damage functions of each 
structure is not feasible. In this case we selected a Monte Carlo simulation approach that uses a 
catalog of earthquakes representative of 10,000 realizations of next year seismic activity. The 
location and the magnitude of the earthquakes in the catalog were selected according to their 
occurrence rates and magnitude distributions. The steps of the Monte Carlo approach are listed 
below: 
 
Step 1. For each earthquake rupture we simulate the ground motion at each building location 
using the Abrahamson and Silva (1997) equation according to one of the four modeling schemes: 
 

(a) Independent ground motion at each site (see Equation 2) 
(b) Constant correlation of ground motion intensity at each site. In this case the 

correlation is introduced by the constant inter-event error term in Equation 1. 
(c) Site-to-site correlation of ground motion intensities assuming the model by 

Jayaram and Baker (2008b) without soil clustering effects. 
(d) Site-to-site correlation of ground motion intensities assuming the model by 

Jayaram and Baker (2008b) with soil clustering effects. For the problem at 
hand, this is the most appropriate modeling approach and, therefore, the 
results from it are considered as benchmark for the results from the other 
three.  

 
The result of this first step is a ground motion random field that is independent in Case a and 
correlated with increasing level of correlation in Cases b, c, and d.  



Step 2. Given the ground motion at each site the building losses are simulated from the damage 
function for the type of concrete buildings considered. The damage function is simply a 
relationship that for a given level of ground motion intensity (here Sa(0.3s)) provides the 
expected damage ratio (i.e., the repair cost divided by the replacement value of the building) and 
associated variability. No building-to-building loss statistical correlation is considered, only the 
functional correlation stemming from the use of the same damage functions for all buildings is.  
 
Step 3. The losses at all sites are then summed to compute the losses for the considered event. 
 
Step 4. Steps 1-3 are repeated for all the earthquakes in the catalog, the losses for all the events 
are then ranked from the highest to the lowest to compute the loss Mean Rate of Exceedance 
(MRE) curve for the portfolio for this realization. The highest loss is assigned a Mean Return 
Period (MRP) of 10,000 years (or, equivalently, a mean rate of exceedance of 1 x 10-4), the 
second highest a MRP of 10,000/2=5,000 years (or a MRE of 2 x 10-4), and so on. This process 
produces one of the curves presented in light gray in Figure 37. 
 
Step 5.  For each of the four ground motion modeling schemes, the simulation process is 
repeated 500 times to produce the 500 loss MRE curves shown in Figure 37a-d. The losses for 
each MRE (or MRP) are then averaged to produce the mean curve shown in red in Figure 37. 
 
A comparison of the loss mean rate of exceedance curves is facilitated in Figure 38, which shows 
the ratio of the loss mean rate curves for all four cases to the loss mean rate curve of the 
benchmark case (Case d, spatial correlation with soil clustering effects).  It is evident that 
assuming independent ground motion as routinely done in most such applications provides a 
poor representation of the risk. For this portfolio, the frequent losses are overestimated by as 
much as 200% and the large losses are underestimated up to 60%. The inaccuracy in the loss 
estimates is confined to ±20% when the spatial correlation is modeled via the inter-event term 
(Case b) or via the spatial correlation scheme with no soil clustering effects. Note that the levels 
of accuracy achieved by Cases a-c when compared with the benchmark results are portfolio-
dependent, it tends to increase for larger portfolios and to decrease for portfolios of buildings, 
especially if they are tightly clustered. Note that the mean exceedance rate curves for Cases a-c 
cross the benchmark one at a MRP of about 50years in this case. This is not a general result since 
the crossing point varies from portfolio to portfolio and tends to occur at longer MRP values for 
smaller portfolios, as will be shown later. Similarly, in this case the approach with constant 
correlation (Case b) and the approach with spatial correlation without soil clustering effects 
(which provides correlation coefficients that decay very rapidly to the plateau of constant 
correlation modeled in Case b) provide very similar MRE curves. This finding holds with 
portfolios with a large number of buildings located in an extended area and it is not a general 
finding. Portfolios with fewer properties more clustered together will exhibit MRE curves for 
Cases b and c that significantly differ, as will be shown below. 
 
Finally, an inspection of Table 2 shows that the impact on the Average Annual Loss (AAL) of 
different ground motion spatial correlation modeling techniques is rather limited for this 
portfolio. This is because neglecting or reducing correlation lowers both tails of the loss 
distribution with counteracting effects on the AAL estimates.  It is emphasized, however, that 
although this consideration about counteracting effects is general the limited difference between 



AAL estimates from different modeling techniques is not. AAL estimates may be materially 
different for portfolios with different characteristics, especially in cases with a few buildings 
clustered together. 
 

 
(a)                                                                                            (b) 

 

 
(c)                                                                                           (d) 

 
Figure 37 Loss exceedance rate curves for the large portfolio assuming (a) independent ground motion intensities at 
each site; (b) constant spatial correlation via the inter-event error term only; (c) spatially correlated ground motion 
intensities at each site without soil clustering effects and (d) spatially correlated ground motion intensities at each 
site with soil clustering effects. The red line is the mean exceedance curve. 
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(a)                                                                                            (b) 

 
Figure 38: (a) Comparison among the mean loss exceedance probability curves obtained for the large portfolio for 
the four cases. (b) Ratio of mean loss exceedance probability curves to the one obtained with spatial correlation with 
clustering effects. 
 
Table 2: Mean Loss for specific mean return periods and average annual loss for different ground motion 
correlation modeling techniques. (Million USD) 

 
 
 
To support some of the statements above regarding the portfolio-dependency of some of the 
findings discussed for large portfolio of properties, we consider the smaller portfolio displayed in 
Figure 36. The loss exceedance rate curves for this portfolio are presented in Figure 39 while the 
ratios of the mean exceedance rate curves are shown in Figure 40. When the portfolio is 
comprised of fewer buildings concentrated in a smaller geographical area, then the likelihood of 
observing much larger (or smaller) ground motion than expected for the given event at all the 
building sites are much higher. Such instances are adequately modeled by the benchmark Case d 
and by Case c, which both captures spatial correlation, and increasingly less appropriately 
modeled by Cases b and a. With this consideration in mind, it appears intuitive that the MRE 
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Spatial Correlation Model(Cluster)

Spatial Correlation Model(No Cluster)
Inter-event Correlation

Independent

MRP (year)
Spatial Correlation 

Model (Cluster)

Spatial Correlation 
Model (No 
Cluster)

Inter-event 
Correlation

Independent

10,000        433.00$               356.77$               358.14$               177.89$               
5,000          328.01$               287.31$               288.73$               176.65$               
2,500          257.74$               228.78$               223.78$               166.27$               
2,000          238.85$               213.73$               207.93$               150.74$               
1,000          181.33$               163.80$               158.50$               128.98$               

500             130.91$               120.27$               116.27$               99.89$                 
250             86.70$                 82.27$                 79.84$                 67.95$                 
200             75.43$                 71.57$                 69.55$                 62.54$                 
100             44.18$                 43.29$                 42.58$                 42.83$                 

50               22.47$                 23.15$                 23.14$                 23.00$                 
AAL 1.86$                   1.85$                   1.87$                   1.92$                   



curves for Cases a and b differ significantly from those obtained in the benchmark Case d. In this 
case the results for Case c are very similar to the target results because all the buildings in this 
portfolio are very closely spaced and the two correlation models do not significantly differ at 
very short distances.  If the geographical area had been, say, a county rather a postal code, the 
buildings would have been, on average, farther apart from one another and in that case Case c 
would have generated less accurate MRE curves. Finally, by inspecting Table 3 it is clear that in 
this case as well the compensating effects of the inaccurate estimates of the likelihood of 
observing very large and very small losses provided by Cases a and b cause AAL estimates that 
are fairly precise. The AAL estimates from the independent ground motion case and the constant 
spatial correlation case differ more markedly from the target results of Case d for portfolios of 
only a few buildings clustered together. 

   
 

 
Figure 39 Loss exceedance probability curves for the small portfolio assuming (a) independent ground motion 
intensities at each site; (b) constant spatial correlation via the inter-event error term only; (c) spatially correlated 
ground motion intensities at each site without soil clustering effects and (d) spatially correlated ground motion 
intensities at each site with soil clustering effects. The red line is the mean exceedance curve. 
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Figure 40: (a) Comparison among the mean loss exceedance probability curves obtained for the small portfolio for 
the four cases. (b) Ratio of mean loss exceedance probability curves to the one obtained with spatial correlation with 
clustering effects. 
 
Table 3: Table 4 Mean Loss for specific mean return period and average annual loss for different simulation 
methodologies. (Thousand USD) 
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Spatial Correlation Model(Cluster)
Spatial Correlation Model(No Cluster)
Inter-event Correlation

Independent

MRP (year)
Spatial Correlation 

Model (Cluster)

Spatial Correlation 
Model (No 
Cluster)

Inter-event 
Correlation

Independent

10,000        5,395.49$            4,957.59$            2,550.22$            1,613.80$            
5,000          3,664.73$            3,368.57$            1,868.93$            1,021.10$            
2,500          2,241.57$            2,130.28$            1,361.94$            855.30$               
2,000          1,922.82$            1,826.88$            1,227.86$            813.73$               
1,000          1,161.59$            1,105.42$            866.60$               681.38$               

500             626.72$               610.61$               572.69$               528.05$               
250             288.44$               291.45$               340.90$               358.61$               
200             217.83$               222.00$               279.76$               302.36$               
100             82.01$                 84.74$                 127.80$               171.07$               

50               24.69$                 25.43$                 40.30$                 51.89$                 
AAL 5.64$                   5.51$                   5.53$                   5.73$                   



5 CONCLUSIONS AND RECOMMENDATIONS 
 
This study has addressed the issue of spatial correlation of ground motion intensities generated 
by a single earthquake and has shown how the spatial correlation can be incorporated into 
assessing both the joint seismic hazard at multiple sites and also portfolio losses. The results of 
this study have been presented in this report and in the companion report by Jack Baker and 
Nirmal Jayaram of Stanford University. 
 
The study discussed here consists of three main parts. The first part deals with ground motion 
correlation in synthetic datasets and complements the study performed at Stanford University 
using real ground motion recordings. Synthetic data were used here to investigate statistical 
properties of the spatial correlation function that could only be addressed with a wealth of 
spatially distributed ground motions generated by the same earthquake that is simply unavailable 
from historical events. This preliminary study has shown that an isotropic model for the spatial 
correlation is, in general, supported by the data. Moreover, the spatial correlation between 
intensities at two sites has been found to be dependent on the site-to-site distance but, in most 
cases, independent of where the two sites were located with respect to the fault rupture. The only 
exception is for near-fault sites within 10km to 20km from the rupture whose spatial correlation 
of intensity measures has been observed to be lower than that of sites at the same distance but 
farther from the rupture. Note that the statements above could gain strength from more 
corroborating evidence that may come from analyzing additional synthetic datasets generated by 
a larger pool of researchers for a larger set of earthquakes. Although beyond the scope of this 
study, note that the results of the correlation study of synthetic data can be used as a guidance in 
assessing whether the ground motion simulation techniques adopted to produce these time 
histories have, statistically speaking, the same spatial signature as those generated by real 
earthquakes.  
 
The second part of this study showed how the spatial correlation can be incorporated into the 
computation of the joint seismic hazard at multiple sites using a direct numerical integration 
approach. This has been achieved by modifying the Vector Probabilistic Seismic Hazard 
Analysis (VPSHA) tool that was originally developed for computing the joint hazard of different 
ground motion parameters at the same site. The application included here also shows how the 
joint hazard computation can be included in the loss estimation of a portfolio of two sites located 
in San Francisco 4km from each other. We also show the errors introduced in the hazard and loss 
estimates when the spatial correlation is either neglected or coarsely modeled. 
 
With the current computer resources, the approach based on VPSHA and, therefore, on 
numerical integration can produced accurate results for portfolios of about five sites. Beyond this 
threshold the accuracy in the estimates of extreme joint ground motion hazard and losses may go 
down because of the need of using coarser bins during the numerical integration. To successfully 
estimating earthquake losses for large portfolio of properties in the presence of spatially 
correlated ground motion intensities we adopted a Monte Carlo simulation approach that we 
apply here to two large portfolios of structures in the San Francisco Bay Area.  Again, the effects 
of neglecting or crudely modeling spatial correlation are outlined.  
 



The results show that, as expected, an appropriate modeling of spatial correlation of ground 
motion is essential when a portfolio of structures is clustered in a rather small region (e.g., a 
postal code) of and becomes less important when the portfolio is spread out in much larger 
geographical area (e.g., the six counties in the San Francisco Bay Area). Note that the latter 
statement above holds true only when one is interested in the loss statistics for the entire (large) 
portfolio. If one drills down on the results from the analyses to extract the loss statistics for a 
smaller area of the portfolio (e.g., the subset of structures within a city boundary or a postal 
code), then those loss estimates losses will not be accurate unless ground motion spatial 
correlation is adequately modeled.   
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